dyadic interval - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

dyadic interval - vertaling naar russisch

IN MATH, A SET OF REAL NUMBERS IN WHICH ANY NUMBER THAT LIES BETWEEN TWO NUMBERS IN THE SET IS ALSO INCLUDED IN THE SET
Interval on the real line; Closed interval; Open interval; Interval (analysis); Half-open interval; Half-closed interval; Interval notation; Interval of the real line; Bounded interval; Semi-open interval; Dyadic interval; Interval Notation; Range notation; Degenerate interval; Values interval; Subinterval; Open Interval; Proper subinterval; Endpoints (interval); Nondegenerate interval; Non-degenerate interval
  • The addition ''x'' + ''a'' on the number line. All numbers greater than ''x'' and less than ''x'' + ''a'' fall within that open interval.

dyadic interval         

математика

двоичный интервал

degenerate interval         

математика

вырожденный интервал

closed interval         

общая лексика

замкнутый интервал

Definitie

simple interval
¦ noun Music an interval of one octave or less.

Wikipedia

Interval (mathematics)

In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1, and all numbers in between. Other examples of intervals are the set of numbers such that 0 < x < 1, the set of all real numbers R {\displaystyle \mathbb {R} } , the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element).

Real intervals play an important role in the theory of integration, because they are the simplest sets whose "length" (or "measure" or "size") is easy to define. The concept of measure can then be extended to more complicated sets of real numbers, leading to the Borel measure and eventually to the Lebesgue measure.

Intervals are central to interval arithmetic, a general numerical computing technique that automatically provides guaranteed enclosures for arbitrary formulas, even in the presence of uncertainties, mathematical approximations, and arithmetic roundoff.

Intervals are likewise defined on an arbitrary totally ordered set, such as integers or rational numbers. The notation of integer intervals is considered in the special section below.

Vertaling van &#39dyadic interval&#39 naar Russisch